
DVTDS
Directory Server

LDAP Directory Benchmark
Cluster and Scaling Capabilities

A TeraCortex White Paper
June 2015

Copyright TeraCortex 06/23/15

Table of Contents
1. Management Summary..3

2. Comparison with other Benchmark Reports...6

3. Benchmark Setup...8

3.1 Hardware and Operating Systems..8
3.2 Populating the Data Base...9
3.3 The Data Model...11
3.4 Benchmark Scenario..14

4. Benchmark Execution...16

4.1 General Approach..16
4.2 Common Observations..17
4.3 Read operation (LDAP Search)...18
4.4 Read / Write mixed operation (LDAP Search / Modify)...19
4.5 Write transactions (Transactional LDAP Modify)...20
4.6 In Memory versus On Disk Operation...21
4.7 Single Machine Results...24

5. Transaction Semantics..27

6. References..29

7. Author...30

Table of figures
Figure 1: Throughput comparison from various benchmark reports..7
Figure 2: Data population mechanism..10
Figure 3: Logical data model (client perspective)..11
Figure 4: Simplified physical data model (server perspective)..13
Figure 5: Throughput diagram for search requests...18
Figure 6: Throughput diagram for mixed read / write requests..19
Figure 7: Throughput diagram for write transaction requests..20
Figure 8: Throughput diagram search requests in memory versus on disk..23
Figure 9: Throughput diagram write transactions in memory versus on disk....................................24
Figure 10: Throughput diagram for a single machine..26
Figure 11: Transaction sequence diagram..27

1 Copyright TeraCortex 06/23/15

Disclaimer

The material presented in this document has been worked with great care to correctness.

However it is not a commitment for delivery of any kind nor does it imply any contractual

binding in a legal sense.

2 Copyright TeraCortex 06/23/15

1. Management Summary

About TeraCortex

For more than 20 years TeraCortex was active in IT consulting focused on development in

large data base environments. Since 2012 we concentrate on the development of LDAP

technology for subscriber data management in mobile and social networks. Further our

products are targeted for scientific environments where large amounts of experimental

data (particle accelerators, wind channels) must be stored and handled in shortest time.

About DVTDS

DVTDS stands for Distributed Virtual Transaction Directory Server, a new high

performance standard LDAP server developed from scratch by TeraCortex. Beside its

outstanding speed and exceptional scaling capabilities the server fully supports a set of

cutting edge functionality like geo redundancy by multiple master replication, distributed

transactions, triggers and view tables. For further details please refer to the DVTDS

feature description [1].

About ELDC

ELDC is a free configurable high performance LDAP client supporting multiple parallel

sessions. It is the reference implementation of the “Embedded LDIF for C” specifications.

For details about ELDC please refer to [3]. The Embedded LDIF specifications are

available as Internet Drafts at the IETF [4], [5], [6], [7] and at the TeraCortex web site.

From there also the executable tool can be downloaded free of charge.

3 Copyright TeraCortex 06/23/15

About this Benchmark

We executed a series of high volume benchmarks against a cluster of 16 virtual machines

in the Amazon EC2 cloud. Each machine was equipped with our LDAP directory server

DVTDS. The setup reached a throughput of more than 22 million ACID compliant

transactional random writes per second on a distributed data base with more than

four billion entries. To our knowledge this is by far the highest result ever reported for a

distributed LDAP directory. Further our internet research about performance and scalability

No SQL key value stores showed that DVTDS compares favorably against state of the art

products like Aerospike, Redis and FoundationDB.

To relate this technical number to human experience: Imagine a social network with two

billion subscribers, which is a substantial portion of the world's population. Assume that all

of them are moving around at the same time and changing their position, any one reaching

a new mobile cell every 100 seconds. Then this data base is able to track everybody's

geographic location in real time. Doing so by use of a small set of virtual machines at a

total hardware price of just US $40 per hour.

Or imagine a shot in a particle accelerator or other scientific experiment: The data base

stores billions of key – value pairs at a rate of more than 40 million/s, having them ready

for evaluation within minutes.

In addition to these outstanding results this benchmark shows:

• DVTDS linear performance scaling in cluster machine arrangements

• It's ability to run full ACID compliant distributed transactions across multiple data

base nodes in clusters at full throughput

• It's ability to effectively handle large collections of key – value pairs

• It's extreme efficient bulk load interface which populates 17.2 billion entries in less

then nine minutes

• Transactional and non – transactional write performance equal or better than read

performance

For a DVTDS replication benchmark please refer to [12].

4 Copyright TeraCortex 06/23/15

Here are the top level results:

4.3 billion entries
(Xeon Haswell)

4.3 billion entries
(Xeon Ivy Bridge)

17.2 billion entries
(Xeon Ivy bridge)

Data load and indexing 105 seconds 110 seconds 502 seconds

Object insert rate 41.3 Million / s 39.0 Million / s 34.2 Million / s

LDAP search request 22.0 Million / s 16.4 Million / s 5.6 Million / s

LDAP transaction
request

 22.0 Million / s 15.0 Million / s 4.9 Million / s

LDAP mixed search /
modify (50% / 50%)

 24.6 Million / s 17.5 Million / s 5.5 Million / s

From the very beginning DVTDS was designed with parallel hardware in mind. Its multi –

threaded architecture is optimized to make maximum use of multiple cores, hard disks and

memory channels. For this reason it scales excellently with modern many – core

machinery. Moreover it is not restricted to a single instance deployment. Instead it fully

supports distributed LDAP operations and transactions across multiple instances running

on the same or different machines while still maintaining a single consistent logical data

model from the client point of view. Throughput and the amount of data can be scaled to

largest deployments by just adding more memory, hard disks and / or machines to the

system. Unlike most well – established LDAP directories it is able to process highest

update workloads in real time. Response times well below as 30 micro seconds are

achievable. The server comes in two flavors:

• As in – memory data base without hard disk back end. This version is intended for

highest volume traffic at moderate data volumes of up to several Terabytes, subject

to the amount of available RAM. The cluster benchmarks published in this

document ran on this type of server.

• As hard disk based, memory mapped version for increased storage requirements

scaling into the Petabyte range, subject to the amount of available hard drives.

Chapter 3.6 describes such a benchmark

5 Copyright TeraCortex 06/23/15

2. Comparison with other Benchmark Reports
There is quite a number of benchmark reports for other products from various sources, in

varying quality and executed on single machines or in cluster environments of different

sizes. One could think to normalize them to a common metric like throughput per physical

CPU core and GHz clock speed. Still such comparison can be doubted, because other

factors influence the outcome, among them:

• Network speed in cluster environments

• Memory generation and speed

• Processor generation, architecture, speed and inter – CPU bandwidth

• On disk or in memory operation

• Number and speed of hard disks, magnetic or solid state drives

• Native or virtual hardware

• Amount of test data loaded

The last point is of particular interest. Today's machines usually have NUMA (Non unified

memory architecture) along with a two socket main board and RAM attached to a

particular processor. This means, that data needed by one processor may be located in

the RAM of the other which requires a time consuming inter – CPU communication before

the data can be processed. With small amounts of data in the benchmark setup this effect

is not visible. But when raised to 50% or 80% of the available RAM the results change

dramatically. Data bases used to deliver millions of operations per second suddenly drop

by fifty or more percent. Benchmarks dealing with just 10 or 50 million small objects (or

key value pairs) tend to hide these problems. This is why we chose the largest possible

data set for our tests. DVTDS turns out faster in any case for In Memory operation. On

Disk only Aerospike and Redis seem to be faster, but take care: Their read write ratio was

50 / 50 non transactional while the DVTDS test was write only transactions. Further their

amount of data was less than 2% of the set used in DVTDS. On the other hand they had

two internal SSD drives (r3.8xlarge) while DVTDS used eight (i2.8xlarge).

6 Copyright TeraCortex 06/23/15

By the way Oracle achieved a LDAP world record when they delivered the shown result in

2013 at the launch of the T5-2 Sparc server. One year later DVTDS broke it with a simple

desktop PC at 3% of Oracle's hardware price.

Figure 1: Throughput comparison from various benchmark reports

Remarks

1) Aerospike running on single native two socket server 2 x Intel E5 2699v3, 50 million records, read –
write 95 / 5. [9]

2) Aerospike and Redis running on single Amazon r3.8xlarge virtual machine, 10 million records, read –
write 50 / 50. [10]

3) Foundation DB running on Amazon cluster of 32 x c3.8xlarge virtual machines, 33 million records per
machine, write only. [11]

4) Oracle running on native two socket sparc server T5-2, 50 million records per machine, read only. [8]

5) DVTDS running on single Amazon c4.8xlarge virtual machine, 256 million records per machine, read
– write 50 / 50

6) DVTDS running on single Amazon i2.8xlarge virtual machine, 256 million records, write only

7 Copyright TeraCortex 06/23/15

3. Benchmark Setup

3.1 Hardware and Operating Systems

The following machines participated in the benchmark:

4.3 billion entries 4.3 / 17.2 billion entries

Machine
Type

Amazon EC2 c4.8xlarge, 36 virtual
cores

Amazon EC2 r3.8xlarge, 32 virtual
cores

Number of
machines

16 16

CPU Intel Xeon E5-2666 v3 (Haswell) @
2.3 GHz

Intel Xeon E5-2670 v2 (Ivy Bridge) @
2.5 GHz

Memory 60 Gbyte DDR4 @ 2133Mhz per
machine

240 Gbyte DDR3 @1600 MHz per
machine

Storage In memory In memory

Network 10 Gbit/s ethernet, same sub net
placement

10 Gbit/s ethernet, same sub net
placement

Operating
system

SLES 12 / 64 Bit SLES 12 / 64 Bit

Directory
server

DVTDS 3.2 / 64 Bit In memory DVTDS 3.2 / 64 Bit In memory

Client ELDC 1.005 running on each
machine

ELDC 1.005 running on each machine

Client –
Server
connection

LDAP / TCP via local host network
interface

LDAP / TCP via local host network
interface

Server –
Server
connection

LDAP / TCP via 10 Gbit ethernet,
same sub net placement

LDAP / TCP via 10 Gbit ethernet,
same sub net placement

8 Copyright TeraCortex 06/23/15

3.2 Populating the Data Base

In preparation of the tests we developed Shell scripts and ELDC sources which created

the entire data base content by a binary sub division algorithm. Like this the loader client

data arrived at the DVTDS data base servers already in indexed form. For this reason the

server was more or less relieved from the task of index creation. This technique ensured

fastest possible population of the data base. From the physical point of view the data was

partitioned into 64 shards, where each of the 16 machines took 4 shards.

Loading was performed by use of the built – in parallel bulk load facility. This function of

DVTDS is able to read multiple streams of BER encoded LDAP add operations directly

from local files or FIFO devices. Indexing was accomplished on the – fly during the load

process. The only indexed attribute was the naming attribute “uid”. We used ELDC to

generate the BER encoded streams from a template. It then fed the parallel streams into

local FIFO devices while DVTDS was sitting at the FIFO outlets, reading the streams and

converting the data to internal representation. This technique avoided the time and disk

space consuming intermediate storage of load data. The entire data set was stored in

main memory. Per shard four parallel BER encoded streams were used, which amounted

to a total of 16 loader sessions per machine. The same process ran at the same time on

each machine with different data content. The picture below shows the relevant

components for a single machine.

Please note, that this power of two setup was only chosen for data population efficiency.

DVTDS supports any number of keys and objects and any type of keys, including non –

numerical ones like names, e-mail addresses or whatever.

9 Copyright TeraCortex 06/23/15

Figure 2: Data population mechanism

10 Copyright TeraCortex 06/23/15

3.3 The Data Model

The logical data model consists of a flat structure below the root distinguished name

dc=com”. A LDAP client sees all the billions of entries below this root. Each entry holds just

a single attribute. This arrangement was chosen for easy comparison with other LDAP

benchmark reports and No SQL key value stores. Please note that DVTDS is not restricted

to such simple data models. It supports multiple values per attribute, multiple attributes per

entry, multiple entries arranged in tree like structures and multiple top level tree roots. In

fact in a real world deployment a subscriber or other type of business subject

(experimental data) would almost always consists of a more or less complex sub tree of

objects, attributes and values and the root of each subscriber's sub tree carries one or

more of its identities that are used as access keys. For the sake of simplicity the initial

attribute values were all the same across the entire data set. The picture below shows the

logical data model:

Figure 3: Logical data model (client perspective)

11 Copyright TeraCortex 06/23/15

Each object is member of the object class inetOrgPerson, which is one of the LDAP

standard model object classes. It holds the single attribute carLicense with an initial 8 byte

value, making up for 112 Bytes of storage space per object. There were no operational

attributes generated by DVTDS. The server supports single root data models (the one we

used in the benchmark) as well as multiple roots (or naming contexts). From the client

point of view the former type of model displays a single logical object space which is

preferable in most situations. In the case of multiple roots the client sees multiple or

partitioned object spaces. Other LDAP products enforce partitioned data models if multiple

hard drives are used for storage. DVTDS has no such restriction because it implements a

strict separation between the logical appearance of the data and its physical distribution

over the underlying hardware. From the perspective of LDAP clients the underlying

physical arrangement is not visible. They just see a homogenous directory information tree

as if connected to a single LDAP serve instance.

From the physical point of view the data is partitioned into 64 shards, where each shard

holds a unique subset of keys and keys are disjoint across all shards (almost no data

redundancy). In fact, “almost no redundancy” means the following: There is a small set of

top level key objects (127 for a 4.3 billion object data base) that are present in either

shard. Each top level key object represents a range of keys on a specific shard. They do

not contain any attribute values. Instead each one carries a reference to a shard where

objects falling in this range can be found. Requests hitting such a reference are

automatically forwarded to the referenced target.

We chose this binary sub division model only for economic reasons: It guaranteed the

fastest possible data population, thus kept our Amazon EC2 charges to a minimum.

DVTDS is not restricted to such regular arrays (tables) of objects. It supports any number

of objects in arbitrary tree structures, aliases (short cut references) pointing across local

data content, remote references pointing across different server nodes and view tables as

known from relational data bases. In any case the clients need not care about of this

server – side physical machinery because it is handled internally by DVTDS. The image

below depicts the physical data arrangement of this benchmark.

12 Copyright TeraCortex 06/23/15

Figure 4: Simplified physical data model (server perspective)

13 Copyright TeraCortex 06/23/15

3.4 Benchmark Scenario

All benchmarks were executed in the following manner:

• On each machine either of four client processes starts 1 … n parallel sessions by

connecting via TCP/IP to the corresponding shard on the same machine

• For each connection the client sends a simple bind request, thus establishing one

ore more LDAP sessions. The server associates the bind credentials with an access

control regime and keeps to it for every request in the session

• After session initiation the client sends a series of requests or transactions (search,

modify) to the server and receives the responses

• All test cases use asynchronous mode. This means that clients bundle a series of

requests into one or more TCP packets and transmit them in burst mode. The

server processes all requests in the bundle before sending the corresponding

bundle of responses. In case of non transactional requests the server then waits for

the next bundle to come in. In case of transactions it waits for the final commit or

rollback directive from the client. The length of the asynchronous queue (number of

requests in a bundle or length of a transaction) is 1000.

• Each request targets a single entry by its distinguished name (the key).

• Modify request in mixed mode or transaction mode change the value of the

attribute. The value lengths varied between 8 bytes and 100 bytes dependent on

the random keys. In average they are 50 bytes long.

• Distinguished names are chosen by random from an array of 100000 random

values ranging across the entire key set. With each invocation of a client process a

new random set is generated. From a statistical point of view all entries have an

equal chance to be targeted. Based on this general outline the random distribution

is shaped in a way that ensures that each request bundle hits always three different

shards. This enforces in any case true distributed operation for all requests and

transactions.

• Each single benchmark is terminated by the client by sending an unbind request for

each established LDAP session

14 Copyright TeraCortex 06/23/15

• After having terminated all sessions each client process calculates the throughput

by simple division of the number of requests through the elapsed time

• The control script runs in a loop over all 64 shards. First just one client is invoked.

Then two clients are invoked connection to the first and second shard and

terminated after having delivered their results and so on. Although there is a 1:1

direct connection between a client process and a shard, the set of random keys

used by each client forces each shard to propagate 60% of the requests to two

other shards. Indirectly each client hits three shards

15 Copyright TeraCortex 06/23/15

4. Benchmark Execution

4.1 General Approach

We performed all tests by repeated execution of scripts from the Linux command line of

the control work station. The latter connected via SSH to each machine the Amazon EC2

cluster. With each invocation we increased the number of affected shards. Further we

varied the number of parallel LDAP sessions fired by the test client and we varied the

operation types (read, read mixed with non transactional write, transactional writes). As

can be expected from parallel implementations the throughput increased with the number

of parallel sessions. Further it increased with the asynchronous queue length. The reason

is quite simple: Most LDAP request messages and LDAP response messages are much

smaller than the TCP MTU (maximum transfer unit, 1500 bytes on many systems). Using

asynchronous operation tends to better fill the available TCP packet size, thus making

maximum use of the underlying network resources. This technique also avoids response

time issues associated with the TCP Nagle algorithm. DVTDS and ELDC support the

LDAP queue length control that enables the client to tell the server the preferred length of

the asynchronous queue. This leads to a two – sided agreement about the optimum

network utilization. The LDAP queue length control specification is available as Internet

Draft at the IETF and at the TeraCortex web site.

16 Copyright TeraCortex 06/23/15

4.2 Common Observations

In the tests we observed the following effects:

• The data base servers ran stable all the time even under highest pressure

• The distributed data base showed perfect linear scaling with the number of client

sessions and affected shards as long as not bottle – necked by machine resource

constraints

• Increasing the total number of client sessions above the total number of virtual

cores in the cluster resulted in performance degradation

• The client CPU consumption was about 20% of the server CPU consumption. As

they ran on the same machines as the servers we expect an additional performance

win if clients would run on their own hardware

• Writes were faster or as fast as reads

• Performance increased with the length of asynchronous queues / number of

requests per transaction. Queue lengths between 50 and 200 seem reasonable.

Increasing the queue length above 200 (as we did) gives smaller and smaller

advantages

17 Copyright TeraCortex 06/23/15

4.3 Read operation (LDAP Search)

The below diagram shows the LDAP search operation throughput over the number of

client processes working against the cluster data bases. Please note, that each client

process started up to eight independent worker threads, At maximum 512 parallel client

sessions were active, leading to as many primary server sessions. Due to random key

distribution every client session forced the servers to propagate 60% of the requests to

subordinate DVTDS nodes, invoking secondary server sessions in the subordinates. The

whole arrangement led to parallel execution of more than 1500 server sessions. The graph

also shows that Amazon r3.8xlarge instances (Intel Ivy Bridge architecture) with six

threads are on par with c4.8xlarge instances (Intel Haswell architecture) using four

threads. This seems consistent with internet sources [9] reporting a 56% performance

advantage of Xeon Haswell over Ivy Bridge. At the high end first signs of machine

saturation are visible.

Figure 5: Throughput diagram for search requests

18 Copyright TeraCortex 06/23/15

4.4 Read / Write mixed operation (LDAP Search / Modify)

See below the scaling diagram for mixed mode operations (50 / 50 LDAP search / modify).

Both request types ran in non transactional mode in this test. The metrics are similar as for

pure searches but up to 9 worker threads were used for each client process. Same as for

pure search the throughput scales in linear fashion, but shows no signs of saturation with

over 1700 parallel sessions present in the distributed data base. On c4.8xlarge instances

the test was executed with 8 and 9 threads per client process and on r3.8xlarge instances

we used 6 threads per client process.

Figure 6: Throughput diagram for mixed read / write requests

19 Copyright TeraCortex 06/23/15

4.5 Write transactions (Transactional LDAP Modify)

In this test we used full ACID compliant LDAP transactions. Due to the random key

distribution almost any transaction was split internally by DVTDS and the parts of the

transactions affecting remote DVTDS nodes were propagated across the network to their

appropriate targets. The particular responses were collected and transmitted to the clients

which were not aware at all that a distributed operation had taken place. The ability to hide

the complex physical data distribution from the clients while still delivering transaction

consistency at unmatched level of performance is an outstanding feature of DVTDS. In

transaction mode first signs of machine saturation are visible at highest throughput.

Figure 7: Throughput diagram for write transaction requests

20 Copyright TeraCortex 06/23/15

4.6 In Memory versus On Disk Operation

DVTDS supports immediate persistence by memory mapped files. These files may be raw

(block) devices, logical volumes under control of a volume manager or cooked space

inside a file system. This feature adds a high level of reliability to the data base, especially

when combined with mirrored disks. However, it comes at the price of a performance

penalty. The latter can be mitigated to a large extend by help of multiple disks because

DVTDS' internal multi threaded design is optimized to make maximum use of parallel

hardware at CPU, RAM and disk level. To put this into numbers we executed a

comparative benchmark between the In Memory and the On Disk version of DVTDS. All

operations were executed on the same machine, with same client programs and DVTDS

tuning configurations, once in memory, once on disk. Here is the specification of the setup:

256 Million entries

Machine Type Amazon EC2 i2.8xlarge, 32 virtual cores

Number of machines 1

CPU Intel Xeon E5-2670 v2 (Ivy Bridge) @ 2.5 GHz

Memory 240 Gbyte DDR3 @ 1600 MHz per machine

Storage On Disk, 8 x 800 GB SSD, internal, direct raw device, no
volume manager

Network Localhost loopback device

Operating system SLES 12 / 64 Bit

Directory server DVTDS 3.2 / 64 Bit On disk high yield

Client ELDC 1.005 running on each machine

Client – Server connection LDAP / TCP via local host network interface

Server – Server connection LDAP / TCP via local host network interface

Queue length / Transaction
length

1000

Client threads per shard 6

Shards 4

Subscribers 256 Million

21 Copyright TeraCortex 06/23/15

This is the same type of hardware as the r3.8xlarge instances used for our in memory

cluster benchmark. The only difference is the presence of eight internal 800 GB SSD

drives. We could also have used Amazon's network attached EBS drives, but configuring

them to acceptable performance is either cumbersome or expensive because Amazon

enforces a disk quota system on them that is bound to the size of the drives. As a

consequence we had to rent five hundred times the needed storage capacity to get

superior IO performance. This is why we preferred the probably slower internal drives.

The benchmark was organized like a stripped down version of the previous cluster

benchmark. Now the cluster consisted of just four shards sitting on the same machine.

Random keys were configured to hit all shards with equal probability which enforced

distributed transactions across the four DVTDS nodes. Each shard was configured to use

two of the eight internal SSD drives.

Here are the top level results:

256 Million entries
(On Disk)

256 Million entries
(In Memory)

Data load and indexing 290 seconds 98 seconds

Object insert rate 0.93 Million / s 2.73 Million / s

LDAP search request 1.05 Million / s 1.19 Million / s

LDAP transaction request 0.64 Million / s 1.15 Million / s

We ran the benchmarks over four minutes to discover situations were updates are

synchronized to the disk hardware or pages are fetched from there. The benchmark

parameters which influence performance scaling (Number of threads, request queue

length, transaction length) were kept at fixed values. The following graph visualizes the

results for search operations. The green lines represents the in memory results, the red

line stands for on disk operation. One can clearly see the periodic physical disk access

were throughput drops by roughly 20%. However, in average the On Disk mode amounts

to more than 70% of the In Memory operation which underlines the efficient

implementation.

22 Copyright TeraCortex 06/23/15

Figure 8: Throughput diagram search requests in memory versus on disk

The following picture shows the results for write transactions. Again the green line displays

the In Memory case, the red line stands for On Disk:

23 Copyright TeraCortex 06/23/15

Figure 9: Throughput diagram write transactions in memory versus on disk

In our experience the principal behavior of write requests On Disk is always similar: First

the performance is quite high but when synchronization to physical drives begins the

performance drops to the average that the hard disk sub system is able to sustain. For this

benchmark twice the number of hard drives would enable DVTDS to catch up to the In

Memory performance.

4.7 Single Machine Results

This test follows the same setup as in the previous chapter but is aimed at the scalability of

24 Copyright TeraCortex 06/23/15

DVTDS on single c4.8xlarge instances. We installed a distributed data base with four

DVTDS nodes (shards) on the machine and used a random key distribution that forced

any request bundle / transaction to be split across two shards. The table below

summarizes the setup.

256 Million entries

Machine Type Amazon EC2 i2.8xlarge, 32 virtual cores

Number of machines 1

CPU Intel Xeon E5-2666 v3 (Haswell) @ 2.3 GHz

Memory 60 Gbyte DDR4 @ 2133Mhz per machine

Storage In memory

Network Localhost loopback device

Operating system SLES 12 / 64 Bit

Directory server DVTDS 3.2 / 64 Bit On disk high yield

Client ELDC 1.005 running on each machine

Client – Server connection LDAP / TCP via local host network interface

Server – Server connection LDAP / TCP via local host network interface

Queue length / Transaction
length

1000

Client threads per shard 1 – 9

Shards 4

Subscribers 256 Million

25 Copyright TeraCortex 06/23/15

The picture shows the scaling throughput for read (search), read / write (search / modify,

50 / 50) and transactional writes (modify). Please note, that each shard was targeted by

one client process with up to 9 threads. At maximum 36 client sessions were active in the

distributed data base.

Figure 10: Throughput diagram for a single machine

26 Copyright TeraCortex 06/23/15

5. Transaction Semantics

DVTDS offers full compliance with international standard LDAP transactions according to

RFC5805. As this specification makes no statement about distributed transactions, DVTDS

implements them as compatible extension. The specification uses an explicit transaction

begin operation. The following sequence diagram shows the principal process. The client

initiates the transaction with a transaction begin request. It receives from the front end

server a transaction begin response which also contains a transaction identifier. Then the

client sends a number of update requests where each request carries the transaction

identifier as part of an appended control. The front end server does the same in direction

of any subordinate servers, means: towards them it behaves like a transaction client

(yellow arrows at the top of the diagram).

Figure 11: Transaction sequence diagram

27 Copyright TeraCortex 06/23/15

But it has to perform one more step: The collection of requests may partially target data

content locally stored in the front end and partially target data content stored in one or

more subordinate servers. The precise data distribution depends on the keys used by the

client to access the target objects. So the front end server must split and distribute the

requests and collect the responses from the subordinate servers. When all responses

have arrived, it must merge them with the results from its local operations and transmit

them all together to the client. (Black arrows in the middle of the sequence diagram).

It is finally the client who decides upon the received responses whether to commit or

rollback the whole transaction. This is done in the final sequence (yellow arrows at the

bottom of the diagram).

Now, whats wrong with the rounded rectangle tagged as “redundant”? RFC 5805 states

that each transactional request has to append a LDAP control carrying the transaction

identifier. But why should the client not chose one by it self? If the TID is only used in a

particular client session and the server has a clear separation between different client

sessions, there is no danger that different transactions get puzzled. In this case the server

may detect a transaction begin with the appearance of the first appended transaction

control carrying an identifier on behalf of the client. This optimization does not compromise

the ACID paradigm but avoids the (by its nature) synchronous and time consuming

process of establishing the transaction context across all parties.

Still there is one more redundancy to be tossed out which is not apparent from the

sequence diagram. Inside a transaction there are typically no or very few operations that

do not belong to it and may be handled by the server separate from it. But RFC 5805 asks

for the presence of a transaction control for every update. The server knows when it is

inside a transaction and needs no reminder for this fact. Once inside a transaction it can in

principle safely assume a transactional update if the control is absent, unless a non –

transaction control accompanies an operation that may be handled outside of the

transaction. This technique avoids transmission of the same information again and again

over the network. Instead of flagging transactional membership for the vast majority of

requests it flags non – transactional membership for the small minority.

In extension to RFC 5805 DVTDS supports both optimizations by online activation on

behalf of the data base administrator. They were used throughout this benchmark and

accelerated all distributed transactions almost to the point of non transactional updates.

28 Copyright TeraCortex 06/23/15

6. References

Document Source

[1] DVTDS Overview www.teracortex.com/en/doc/DVTDS_ DirectoryServer .pdf

[3] ELDC User guide www.teracortex.com/en/doc/ELDC_UserGuide.pdf

[4] Extended LDIF www.teracortex.com/en/doc/ExtendedLDIF.pdf

Also available as Internet Draft at www.ietf.org

[5] Embedded LDIF www.teracortex.com/en/doc/EmbeddedLDIF.pdf

Also available as Internet Draft at www.ietf.org

[6] Embedded LDIF for C www.teracortex.com/en/doc/EmbeddedLDIF_C.pdf

Also available as Internet Draft at www.ietf.org

[7] LDAP Queue Length
Control

www.teracortex.com/en/doc/QueueLengthControl.pdf

Also available as Internet Draft at www.ietf.org

[8] Oracle OID benchmark
March 2013

www.oracle.com/technetwork/middleware/id-
mgmt/overview/oid-50m-user-sparct5-2-benchmark-
1955392.pdf

[9] Aerospike benchmark at
Intel labs

www.intel.com/content/www/us/en/processors/xeon/xeon
-e5-v3-ssd-aerospike-nosql-brief.html

[10] Lynnlangit blog lynnlangit.com/2015/01/28/lessons-learned-
benchmarking-nosql-on-the-aws-cloud-aerospikedb-and-
redis

[11] Foundation DB foundationdb.com/key-value-store/performance

[12] DVTDS Replication
Benchmark

www.teracortex.com/en/doc/ DVTDS_Benchmark_Global

Replication .pdf

29 Copyright TeraCortex 06/23/15

http://www.teracortex.com/en/doc/DVTDS_Overview.pdf
http://www.teracortex.com/en/doc/QueueLengthControl.pdf
http://www.teracortex.com/en/doc/QueueLengthControl.pdf
http://www.teracortex.com/en/doc/QueueLengthControl.pdf
http://www.teracortex.com/en/doc/QueueLengthControl.pdf
http://www.teracortex.com/en/doc/QueueLengthControl.pdf
http://www.teracortex.com/en/doc/EmbeddedLDIF_C.pdf
http://www.teracortex.com/en/doc/EmbeddedLDIF.pdf
http://www.teracortex.com/en/doc/ExtendedLDIF.pdf
http://www.teracortex.com/en/doc/ELDC_UserGuide.pdf
http://www.teracortex.com/en/doc/DVTDS_Overview.pdf
http://www.teracortex.com/en/doc/DVTDS_Overview.pdf

7. Author

Christian Hollstein E-Mail: chollstein@teracortex.com

TeraCortex Phone: 0049 / 5473 / 9933

Hopfenbrede 2 Mobile: 0049 / 160 / 96220958

D-49179 Ostercappeln

30 Copyright TeraCortex 06/23/15

mailto:chollstein@teracortex.com

	1. Management Summary
	2. Comparison with other Benchmark Reports
	3. Benchmark Setup
	3.1 Hardware and Operating Systems
	3.2 Populating the Data Base
	3.3 The Data Model
	3.4 Benchmark Scenario

	4. Benchmark Execution
	4.1 General Approach
	4.2 Common Observations
	4.3 Read operation (LDAP Search)
	4.4 Read / Write mixed operation (LDAP Search / Modify)
	4.5 Write transactions (Transactional LDAP Modify)
	4.6 In Memory versus On Disk Operation
	4.7 Single Machine Results

	5. Transaction Semantics
	6. References
	7. Author

